1.立足基础,融会贯通
解答题作答的基本功还是在于对基本概念、基本定理和性质以及基本解题方法的深入理解和熟练掌握。因此首先做好的有两个层面的复习:
第一,把基本概念、定理、性质彻底吃透,将重要常用的公式、结论转变为自己的东西,做到不靠死记硬背也可得心应手灵活运用,这是微观方面。
第二,从宏观上讲,理清知识脉络,深入把握知识点之间的内在关联,在脑海中形成条理清晰的知识结构,明确纵、横双方向上的联系,方可做到融会贯通,对综合性考查的题目尤为受用。
2.分类总结解题方法与技巧
主观题分为三大类:计算题、证明题、应用题。三类题型分别有各自独特的命题特点以及相应的做题技巧。
计算题要求对各种计算(如未定式极限、重积分等)常用的定理、法则、变换等烂熟于心,同时注意各种计算方法的综合运用。
证明题(如中值定理、不等式证明等)则须对题目信息保持高度敏感,熟练建立题设条件、结论与所学定理、性质之间的链接,从条件和结论双向寻求证明思路。
应用题着重考查利用所学知识分析、解决问题的能力,对考生运用知识的综合性、灵活性要求很高。
同学们在复习的过程中要注意针对三种不同的题型分别总结解题方法与技巧,及时归纳做题时发掘的小窍门、好方法,不断提高解题的熟练度、技巧性。
3.抓好两个基本点
即核心题型及易错题型。
核心题型包括近年考试常考的题目类型,如高等数学中的洛必达法则、复合函数求导、二重积分计算,线性代数中的特征值、特征向量、矩阵对角化,概率统计中的随机变量密度函数、独立性、数字特征等问题,都需要同学们熟练掌握题目解法,落实到底。
另外很重要的一点就是对自己掌握不太好的题型、经常做错或者感觉无从下手的题型也要多花时间彻底搞懂,弄通,并且通过更多的同类题目的练习加深巩固,直到对此类题目及与此相关的题目都能够轻松破解,变难题为拿手题,长此以往解题能力必可获得显著提高。